Censo y Muestreo.
Existen dos formas de estudiar las poblaciones: por censo y por muestreo. En el censo se consideran todos y cada una uno de los elementos de una población, mientras que en el muestreo se analiza una proporción reducida y representativa de ella.
Mientras que los censos son muy útiles para el estudio de poblaciones pequeñas, podría decirse que son más las ventajas del muestreo frente al censo; algunas de ellas son:
● Costo: El estudio de todos los elementos de una población requiere de una mayor cantidad de recursos en comparación con el estudio de una muestra.
● Rapidez: Cuando se trabaja con una muestra, la información puede ser recolectada y procesada más rápidamente que cuando se realiza un censo.
● Posibilidad de realizarse: En algunas ocasiones, simplemente no es posible estudiar todos y cada uno de los elementos de una población, ya sea porque ésta es infinita o al menos tan grande que excede las posibilidades del investigador; también ocurre a menudo que las pruebas a las que hay que someter a los individuos son de carácter destructivo, como en el ejemplo de los huevos de la granja, en el que se debe examinar su contenido, la duración de una batería o una bombilla, en la que estos se prueban hasta que dejan de funcionar, pruebas de impacto sobre cascos de motociclistas, etc.
Variables Cualitativas y Cuantitativas.
Se llama variable estadística a cada una de las características o cualidades que poseen los individuos de una población. Éstas pueden ser de dos clases:
Téngase como ejemplo el caso del lanzamiento de una moneda, para observar qué lado cae hacia arriba. El lado de la moneda que cae hacia arriba, será entonces la variable. Los valores serán los dos posibles resultados, cara y sello (omítase la eventualidad de que caiga de canto). Los datos serán todos los resultados que en efecto se obtuvieron al momento de realizar las pruebas (sello, cara, cara, cara, sello, cara, sello, sello, ...). En un segundo caso, un fabricante produce un modelo de sillas en tres colores: amarillo, azul y rojo, y se hace un estudio para conocer cuál de estos es el más vendido; aquí, la variable es el color de la silla; los valores son amarillo, azul y rojo; los datos son los colores de las sillas que efectivamente han sido vendidas y que han sido tenidas en cuenta para el estudio (azul, roja, roja, roja, amarilla, azul, roja, azul, ...).
Anterior entrada: Conceptos básicos de estadística, parte I
Siguiente entrada: Conceptos básicos de estadística, parte III
- Cualitativas: Se refieren a características o cualidades que no pueden ser medidas con números. Entre ellas, se diferencian dos tipos:
- Nominales: No admiten un criterio de orden; por ejemplo, el estado civil de una persona (soltero, casado, viudo, separado, unión libre), la nacionalidad de los jugadores de determinada liga de fútbol (argentino, boliviano, chileno, colombiano, ecuatoriano, español, peruano, etc.), el sexo de una persona (masculino o femenino), los colores más vendidos por un fabricante de pinturas, etc.
- Ordinales o cuasicuantitativas: Existe un orden entre ellas; es decir, pueden ordenarse de acuerdo con alguna escala establecida; por ejemplo, las medallas obtenidas en una prueba olímpica (oro, plata y bronce), el grado de satisfacción con respecto a un servicio recibido (muy satisfecho, satisfecho, indeciso, insatisfecho, muy insatisfecho) o la escala sismológica modificada de Mercalli, que clasifica un sismo desde muy débil hasta catastrófico.
- Cuantitativas: Se expresan mediante un número, pudiéndose por tanto realizar operaciones aritméticas con ellas. Pueden ser también de dos tipos:
- Discretas: Toman solamente valores aislados, dentro de un conjunto numerable; es decir, no acepta valores intermedios, por fuera de ese conjunto, entre dos valores específicos; por ejemplo, el número de autos vendidos semanalmente en un concesionario: 0, 1, 2, 3, 4, 5, 6, ... o la altura, en pisos, de los edificios en un sector comercial: 8, 9, 10, 11, ...
- Continuas: Pueden tomar cualquier valor dentro de un intervalo comprendido entre dos números; entre cualquier par de valores observables, siempre existirá un tercer valor posible que pueda tomar la variable. El valor observado depende, en gran medida, de la precisión de los instrumentos de medición. Ejemplo de este tipo de variables son: la altura de las casas en un barrio residencial: 10.5m, 10,6m, 10.65m, 11.743m, ... o el peso de una docena de manzanas: 1.8Kg, 1.8671Kg, 1.894Kg, 1,92Kg, ... Sin importar qué par de valores se tome, siempre existe la posibilidad de que ocurra uno intermedio entre ellos.
Diferencia entre variable, valor y dato.
Como se acaba de describir, variable es cada característica de los individuos de una población. A cada uno de los distintos resultados que se puede obtener en un estudio estadístico, se le llama valor. Finalmente, cada uno de los valores obtenidos durante la realización de un estudio estadístico, es un dato.Téngase como ejemplo el caso del lanzamiento de una moneda, para observar qué lado cae hacia arriba. El lado de la moneda que cae hacia arriba, será entonces la variable. Los valores serán los dos posibles resultados, cara y sello (omítase la eventualidad de que caiga de canto). Los datos serán todos los resultados que en efecto se obtuvieron al momento de realizar las pruebas (sello, cara, cara, cara, sello, cara, sello, sello, ...). En un segundo caso, un fabricante produce un modelo de sillas en tres colores: amarillo, azul y rojo, y se hace un estudio para conocer cuál de estos es el más vendido; aquí, la variable es el color de la silla; los valores son amarillo, azul y rojo; los datos son los colores de las sillas que efectivamente han sido vendidas y que han sido tenidas en cuenta para el estudio (azul, roja, roja, roja, amarilla, azul, roja, azul, ...).
Anterior entrada: Conceptos básicos de estadística, parte I
Siguiente entrada: Conceptos básicos de estadística, parte III
No hay comentarios.:
Publicar un comentario